COMMUNICATIONS TO THE EDITOR

A NEW GROUP OF ISOMORPHOUS COMPOUNDS A_2XO_4

Sir:

X-Ray data show that alkali sulfates $Me_2^ISO_4$ constitute with alkali alkaline earth phosphates $Me^IMe^{II}PO_4^1$ and with calcium orthosilicate Ca_2SiO_4 , modified by phosphate as in Bessemer and open-hearth furnace slags, principally at elevated temperatures, a new group of isomorphous compounds A_2XO_4 with a rather simple hexagonal unit cell containing two molecules. The space group D_{3d}^3 and the atomic parameters have been determined for glaserite, $K_3Na(SO_4)_2$, the only substance known before to possess this particular lattice.²

TABLE I			
Substance and temp. range of stability	Lattic ao	e dimensi	ons, Å. c/a
α -K ₂ SO ₄ , above 590 °	5.71	7.86	1.375
α -Na ₂ SO ₄ (I), above 239 ° ³	5.38^{4}	7.26^{4}	1.350
Glaserite (K, Na) ₂ SO ₄ , room			
temp.	5.66^{2}	7.33²	1.295^{2}
$lpha$ -CaNaPO4, above 680°	5.23	7.13	1.364
α -CaKPO ₄ , above 705°	5.58	7.60	1.360
SrNaPO ₄	5.48	7.36	1.34
BaNaPO ₄	5.64	7.35	1.30
Calcium phosphato silicates, $Ca_{x}(SiO_{4}, PO_{4}):$			
$(Ca_2SiO_4, \frac{1}{2}Ca_3(PO_4)_2)^{1,6,7}$	5.38	7.05	1.310
$(Ca_2SiO_4, Ca_3(PO_4)_2)^a$	5.21	6.90	1.32
^a Allotropic form of silicocarnotite, 5CaO·P ₂ O ₅ ·SiO ₂ . ⁵			

The group is expected to include chromates, vanadates, molybdates, tungstates, arsenates, selenates and other compounds A_2XO_4 , particularly at elevated temperatures.

The high-temperature forms can be stabilized by the addition of substances which are insoluble in the low-temperature phase and therefore must be precipitated for transformation. More effective than additions of substances A_2XO_4 , which are not isomorphous with the low-temperature forms of the compounds A₂XO₄ to which they are added, are compounds which deviate in composition from A_2XO_4 , such as compounds A_2XO_3 (for instance carbonates), AXO₄ (for instance, alkaline earth sulfates), $A_3(XO_4)_2$ (for instance, alkaline earth phosphates) or others. Examples are CaNaPO₄-Na₂CO₃, CaKPO₄-K₂CO₃,¹ Na₂SO₄-Na₂CO₃,⁴ Na₂SO₄-CaSO₄, Ca₂SiO₄-calcium phosphates and many others. The identity of the X-ray patterns of alleged "binary compounds," "CaNa₈(SO₄)₅"⁵ or $K_3Na(SO_4)_2$, "² with the pattern of one or both of their components, together with the known phase diagram of these systems, proves they actually are solid solutions of CaSO₄ in α -Na₂SO₄ and of Na₂SO₄ in α -K₂SO₄, respectively.

VANADIUM CORPORATION OF AMERICA NEW YORK, N. Y. M. A. BREDIG DECRIVED JUNE 27, 1941

EFFECT OF HYDROCYANIC ACID ON DISULFIDES Sir:

The formation of mercaptans from disulfides by the action of cyanide in alkaline solution has long been recognized and interpreted as RS—SR + NaCN \rightarrow RSNa + RSCN [I. Mauthner, Z. physiol. Chem., 78, 28 (1912); also H. T. Clarke in Gilman, "Organic Chemistry," Vol. II, John Wiley and Sons, Inc., New York, N. Y., 1938, p. 915]. In discussing the mechanism of activation of such proteolytic enzymes as papain, etc., by hydrogen cyanide, Irving, et al. [G. W. Irving, T. S. Fruton and M. Bergmann, J. Biol. Chem., 139, 569 (1941)] pose the question whether a similar reaction can occur also in slightly acid solution since activation can be brought about at ρ H 5.

In an attempt to answer this question cystine and (-S-S-) glutathione were treated with hydrogen cyanide at *p*H 5 and different temperatures. After various time intervals, qualitative and quantitative tests for thiol groups and for cysteine specifically were performed (nitroprusside test, the Sullivan reaction [M. X. Sullivan, *Public Health Repts.*, 44, 2, 1600 (1929). This method when applied to the determination of cysteine in the presence of cystine was found reliable when the cysteine comprised at least 10%

⁽¹⁾ H. H. Franck, R. Frank, E. Kanert and M. A. Bredig, Z. anorg. allgem. Chem., 230, 1 (1936), and 237, 49 (1938).

⁽²⁾ B. Gossner, Neues Jahrb. Mineral., **B**, **57A**, 89 (1928); "Structurbericht." 1913–1928, p. 378.

⁽³⁾ F. C. Kracek and C. J. Ksanda, J. Phys. Chem., 34, 1741 (1930).

⁽⁴⁾ L. S. Ramsdell, Am. Mineral., 24, 109 (1939).

⁽⁵⁾ R. Klement and F. Steckenreiter, Z. anorg. allgem. Chem., **245**, 236 (1940).

⁽⁶⁾ G. Troemel and A. Koerber, Arch. Eisenhüettenw., 7, 7 (1933).
(7) G. Nagelschmidt, J. Chem. Soc., 865 (1937).